Prediction of student's mood during an online test using formula-based and neural network-based method
نویسندگان
چکیده
Please cite this article in press as: Moridis, C. N network-based method. Computers & Education Building computerized mechanisms that will accurately, immediately and continually recognize a learner’s affective state and activate an appropriate response based on integrated pedagogical models is becoming one of the main aims of artificial intelligence in education. The goal of this paper is to demonstrate how the various kinds of evidence could be combined so as to optimize inferences about affective states during an online self-assessment test. A formula-based method has been developed for the prediction of students’ mood, and it was tested using data emanated from experiments made with 153 high school students from three different regions of a European country. The same set of data is analyzed developing a neural network method. Furthermore, the formula-based method is used as an input parameter selection module for the neural network method. The results vindicate to a great degree the formulabased method’s assumptions about student’s mood and indicate that neural networks and conventional algorithmic methods should not be in competition but complement each other for the development of affect recognition systems. Moreover, it becomes apparent that neural networks can provide an alternative for and improvements over tutoring systems’ affect recognition methods. 2009 Elsevier Ltd. All rights reserved.
منابع مشابه
Online Composition Prediction of a Debutanizer Column Using Artificial Neural Network
The current method for composition measurement of an industrial distillation column includes an offline method, which is slow, tedious and could lead to inaccurate results. Among advantages of using online composition designed are to overcome the long time delay introduced by laboratory sampling and provide better estimation, which is suitable for online monitoring purposes. This paper pres...
متن کاملInvestigating Financial Crisis Prediction Power using Neural Network and Non-Linear Genetic Algorithm
Bankruptcy is an event with strong impacts on management, shareholders, employees, creditors, customers and other stakeholders, so as bankruptcy challenges the country both socially and economically. Therefore, correct prediction of bankruptcy is of high importance in the financial world. This research intends to investigate financial crisis prediction power using models based on Neural Network...
متن کاملPrediction of the Liquid Vapor Pressure Using the Artificial Neural Network-Group Contribution Method
In this paper, vapor pressure for pure compounds is estimated using the Artificial Neural Networks and a simple Group Contribution Method (ANN–GCM). For model comprehensiveness, materials were chosen from various families. Most of materials are from 12 families. Vapor pressure data of 100 compounds is used to train, validate and test the ANN-GCM model. Va...
متن کاملError Modeling in Distribution Network State Estimation Using RBF-Based Artificial Neural Network
State estimation is essential to access observable network models for online monitoring and analyzing of power systems. Due to the integration of distributed energy resources and new technologies, state estimation in distribution systems would be necessary. However, accurate input data are essential for an accurate estimation along with knowledge on the possible correlation between the real and...
متن کاملNeuro-Fuzzy Based Algorithm for Online Dynamic Voltage Stability Status Prediction Using Wide-Area Phasor Measurements
In this paper, a novel neuro-fuzzy based method combined with a feature selection technique is proposed for online dynamic voltage stability status prediction of power system. This technique uses synchronized phasors measured by phasor measurement units (PMUs) in a wide-area measurement system. In order to minimize the number of neuro-fuzzy inputs, training time and complication of neuro-fuzzy ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computers & Education
دوره 53 شماره
صفحات -
تاریخ انتشار 2009